

Modeling and Observations to Detect Neighborhood-scale Heat Islands and Inform Effective Countermeasures in Los Angeles California Climate Change Assessment webinar

5 December 2018 Lawrence Berkeley National Laboratory (LBNL) University of Southern California (USC) Altostratus, Inc.

1

### Dark, dry surfaces + man-made heat can create urban "heat islands" of elevated air temperature



a summer urban heat island



We measured and modeled how surface cover affects air temperature in Los Angeles...









## ...to gauge current and predict future cooling by heat-island countermeasures



Cool roofs & walls



Lawns & shade trees



# The core research team includes Berkeley Lab, USC, and Altostratus



### We were fortunate to count on the support of project partners and collaborators

#### **Partners**



#### Collaborators





Climate

Resolve

### We also received early guidance and feedback from our Technical Advisory Committee members

| Name          | Organization                                                      | Name             | Organization                                  |
|---------------|-------------------------------------------------------------------|------------------|-----------------------------------------------|
| Susan Wilhelm | California Energy<br>Commission                                   | Tom Pyle         | CA Department of Transportation               |
| Chris Weaver  | US Environmental<br>Protection Agency                             | Craig Tranby     | Los Angeles<br>Department of<br>Water & Power |
| Ash Lashgari  | CA Air Resources<br>Board                                         | Henry Ortiz      | Los Angeles Unified<br>School District        |
| William Dean  | CA Environmental<br>Protection Agency<br>(CalEPA)                 | Robert Bornstein | San Jose State<br>University                  |
| Rupa Basu     | CalEPA, Office of<br>Environmental<br>Health Hazard<br>Assessment |                  |                                               |

### Approach

- Use climate modeling + preliminary measurements to select study regions in Los Angeles
- 2. Measure air temperatures with stationary and mobile weather monitors
- 3. Relate air temperature variations to land use/land cover
- 4. Validate and calibrate climate models for predictions



# Modeling efforts



# Nine different land-use and land-cover datasets were included in the analysis



- 30-m National Land Cover Data (NLCD)
- 30-m USGS Level-II LULC classification
- Area-specific LULC, City of Los Angeles
- Area-specific building footprints and geometry, County of Los Angeles
- Google Earth urban morphological and land-cover data (canopy layer)
- 1-m area-specific satellite-derived roof albedo (Lawrence Berkeley Lab)
- 1-m area-specific urban morphological and geometrical data from the National Urban Datasets and Portal Tool (N/WUDAPT)
- Fine-scale USGS Level-IV LULC (SCAG)
- 1-m EarthDefine / CAL FIRE urban tree canopy cover

Sample from the Anderson Level-IV SCAG LULC classification system showing parts of Downtown Los Angeles and San Fernando Valley

San Fernando Valley (SFV)

**Downtown Los Angeles** 





### LULC data were used in development of cellspecific surface characterization input to the model

Bottom-up, cell-level surface characterization



Model input development example for 500-m resolution SFV domain: gridded albedo (left) and tree canopy cover (right).



# Meteorological modeling to identify local urban heat and cool islands



Total DH (°C·hr) May 30 – June 16, 2013

The derived average temperature (DH/hour), blue to red, is 17.2–20.6 °C for this period.

Total DH (°C·hr) May 30 – June 16, 2013

877

8534

8177

7940

The derived average temperature (DH/hour), blue to red, is 17.7–22.9 °C for this period.



Urban climate simulations guide placement of rooftop weather stations & routes for mobile transects



# Model performance was evaluated against observations from mobile transects



- 30-m tree cover (yellow, light green, black)
- Building-specific roof albedo (red, orange, light orange)
- Sample mobile transect segment (white dots)

#### Model performance metrics

| TRANSECT                               | MAE (°C) | RMSE (°C) |
|----------------------------------------|----------|-----------|
|                                        |          |           |
| 2016_04_22 (west basin)                | 1.15     | 1.33      |
| 2017_06_14 Part 1 (west basin)         | 0.88     | 1.00      |
| 2017_06_14 Part 2 (west basin)         | 0.61     | 0.76      |
| 2017_06_14 Part 3 (west basin)         | 0.80     | 0.94      |
| 2017_06_14 Part 4 (west basin)         | 0.70     | 0.86      |
| 2017_06_21 (San Fernando)              | 1.73     | 2.00      |
| 2017_07_27 day Part 1 (San Fernando)   | 0.97     | 1.20      |
| 2017_07_27 day Part 2 (San Fernando)   | 0.92     | 1.10      |
| 2017_07_27 night Part 1 (San Fernando) | 0.55     | 0.68      |
| 2017_07_27 night Part 2 (San Fernando) | 0.85     | 1.00      |
| 2017_08_28 day Part 1 (west basin)     | 0.48     | 0.60      |
| 2017_08_28 day Part 2 (west basin)     | 0.71     | 0.94      |
| 2017_08_28 night Part 1 (west basin)   | 1.00     | 1.10      |
| 2017_08_28 night Part 2 (west basin)   | 0.82     | 0.92      |

#### Example:

Transect-specific simulated temperatures compared to mobile-transect

observations. Benchmark is 2 °C.

# Modeling results informed the siting of fixed monitors and routes for transects

#### San Fernando Valley (SFV)



#### **Downtown Los Angeles**





Mobile-observation route Potential site for fixed monitor



### Methodology Observed temperatures



We had three methods to collect the intra-urban temperature variations

- 1. Existing weather station networks in Los Angeles Basin
- 2. Mobile transects in various neighborhoods on different days and times
- 3. New fixed monitors that the team installed



# We compiled historical weather observations from 6 sources over the past decade



Location of fixed weather stations in LA county featured in study

- Weather Underground
- WeatherBug

CIMIS

Personal weather stations (PWS) have more spatial coverage than other sources

We had three methods to collect the intraurban temperature variations

- Existing weather station networks in Los Angeles Basin
- 2. Mobile transects in various neighborhoods on different days and times
- 3. New fixed monitors that the team installed



### Mobile transects (car + thermometer + GPS) used to check modeled air temperature simulations



Mobile transect sensor (front & side views) Three different mobile transects routes



We had three methods to collect the intra-urban temperature variations

- Existing weather station networks in Los Angeles Basin
- Mobile transects in various neighborhoods on different days and times
- 3. New fixed monitors that the team installed



## We installed four fixed monitors across the County in partnership with BSS, LAUSD, & USC



Location of four installed stations and view of Monitor3



## We designed monitors to measure temperature, humidity, incoming solar radiation, and wind



| Item | Description               |
|------|---------------------------|
| А    | Wind speed sensor         |
| В    | Wind direction sensor     |
| С    | Sunlight intensity sensor |
| D    | Temperature/RH sensor     |
| E    | Data logger               |



# Some data from the new monitors is available via Weather Underground

#### (•) Reseda KCAWINNE11 About this PWS | Report | Comments

Forecast for Winnetka, CA > 34.212 -118.582 > 814 ft

PWS Data PWS Widgets WunderStation

#### 🖊 Status:

PWS viewed 20 times since June 1, 2018



#### Website & location for four project monitors

| Location                             | URL                                                                                    |
|--------------------------------------|----------------------------------------------------------------------------------------|
| University of Southern<br>California | https://www.wunderground.com/personal-<br>weather-<br>station/dashboard?ID=KCALOSAN765 |
| Chatsworth, SFV                      | https://www.wunderground.com/personal-<br>weather-station/dashboard?ID=KCACHATS19      |
| Winnetka, SFV                        | https://www.wunderground.com/personal-<br>weather-station/dashboard?ID=KCAWINNE11      |
| Reseda, SFV                          | https://www.wunderground.com/personal-<br>weather-station/dashboard?ID=KCARESED8       |

View WunderMap



Previous

✓ June ✓ 4 ✓ 2018 ✓

#### Summary June 4, 2018

|               | High        | Low     | Average |               |
|---------------|-------------|---------|---------|---------------|
| Temperature   | 88.3 °F     | 58.8 °F | 71.8 °F | Wind Speed    |
| Dew Point     | 58.3 °F     | 53.5 °F | 55.9 °F | Wind Gust     |
| Humidity      | %           | %       | %       | Wind Directio |
| Precipitation | <b>0</b> in | -       | -       | Pressure      |

Daily Mode

View

High

4 mph

14 mph

**0** in

Low

---

---

in

| > |   |
|---|---|
|   | > |

Average

1 mph

North

PWS tends to be less accurate with better spatial coverage; fixed monitors and mobile transects are more accurate and have higher costs

|      | PWS                                                                                                     | Mobile transects                                                                                                                                               | Installed fixed monitors                                                                                                    |  |  |
|------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--|--|
| Pros | <ul> <li>High spatial coverage</li> <li>Acquiring data is<br/>affordable</li> </ul>                     | <ul> <li>Quick to deploy</li> <li>Highly customizable</li> <li>Accurate sensors</li> <li>Inexpensive for short-<br/>term measurements</li> </ul>               | <ul> <li>Provide spatial coverage where we need them</li> <li>Very accurate sensors</li> </ul>                              |  |  |
| Cons | <ul> <li>Sensors and data collection methods can be unreliable</li> <li>Placement is limited</li> </ul> | <ul> <li>24-hr monitoring is not<br/>readily available</li> <li>Low spatial coverage</li> <li>Expensive if using for<br/>long-term<br/>measurements</li> </ul> | <ul> <li>Securing long-term<br/>locations can be difficult<br/>and time consuming</li> <li>High short-term costs</li> </ul> |  |  |



### **Analysis & results** PERSONAL WEATHER STATIONS



### We considered two main regions of interest: SFV and central Los Angeles

### Daily statistics for observed temperature in two regions of interest

|                        | Daily min   | Daily max   | Daily mean  | Diurnal     |
|------------------------|-------------|-------------|-------------|-------------|
| Region                 | temperature | temperature | temperature | temperature |
|                        | (°C)        | (°C)        | (°C)        | range (°C)  |
| SFV                    | 19.4        | 30.5        | 24.3        | 11.1        |
| Central Los<br>Angeles | 18.9        | 27.7        | 22.5        | 8.8         |



the county (black bar showing median)

# Land cover and land use was associated to inter-urban temperatures from PWS



Aggregated area around each weather station, overlaid with building footprint dataset Weather Underground stations: SFV and central Los Angeles



## Results showing cooling effects from roofs—more effective during warmest hours of the day



Diurnal cycle of sensitivity of air temperature to average daily reflected solar radiation in two regions of interest



## Roofs are responsible for most of the variation of average daily reflected solar radiation





### Analysis & results MOBILE TRANSECTS & MODELING



# Increasing neighborhood-scale albedo and/or canopy cover reduces air temperature

Examples of correlations between <u>observed</u> temperature and transect albedo or canopy cover



TR07: Downtown area, 2017-08-28 night P1; WSP: 1.10 m/s; SOLAR: 0 W/m<sup>2</sup> ALB: -4.00°C/0.1, p-value: <0.0001; VEG: -1.61°C /0.1, p-value: <0.0001





CART for transect TR13 (Downtown area)



TR09: San Fernando Valley, 2017-07-27 day P1; WSP: 1.70 m/s; SOLAR: 912 W/m<sup>2</sup>; VEG: -0.40°C /0.1, p-value: <0.0001

## Simple and multiple regression: Correlations with albedo and canopy cover



C Relative temperature impacts (°C) of albedo (blue) and vegetation cover (red) changes of 0.1 (unbounded)



34

-2

-3

-2.5

-3.5

### **Application of results**



## Increases in albedo and tree cover were found to reduce air temperatures





- PWS analysis revealed increases in roof albedo at neighborhood scale are associated with reductions in air temperature
- Analysis from mobile transects also found a cooling effect from area-wide increase in albedo and/or canopy cover



Source: Los Angeles Times

# These findings affect local implementation in California communities





Source: Chandler's Roofing

- Evidence in study from existing roof albedo & urban greening values which have room for improvement
- Cool roof & greening programs
   and policies can mitigate urban
   heat
- These programs can be tailored to be more effective



# The calibrated model can be used in other communities in CA to find local UHIs



But same model and methodology can be applied to other CA communities



EXAMPLE: Fresno, CA



### Local and state government programs could utilize project results

- City of Los Angeles Department of Water and Power's Cool Roof rebate program
- California Natural Resource Agency's Urban Greening program



**URBAN GREENING PROGRAM** 

FINAL GUIDELINES

FUNDED BY CALIFORNIA CLIMATE INVESTMENTS

STATE OF CALIFORNIA CALIFORNIA NATURAL RESOURCES AGENCY





### Related publications

- Mohegh A, Levinson R, Taha H, Gilbert H, Zhang J, Li T, Tang T, Ban-Weiss G. 2018. Observational evidence of neighborhood scale reductions in air temperature associated with increases in roof albedo. *Climate* 6, 98 (19 pp). <u>https://doi.org/10.3390/cli6040098</u>
- Taha H, Ban-Weiss G, Chen S, Gilbert H, Goudey H, Ko J, Mohegh A, Rodriguez A, Slack J, Tang T, and Levinson RM. 2018. Modeling and observations to detect neighborhoodscale heat islands and inform effective countermeasures in Los Angeles. A report for California's Fourth Climate Change Assessment, report # CCCA4-CEC-2018-007. <u>http://www.climateassessment.ca.gov/techreports/docs/20180827-Energy\_CCCA4-CEC-2018-007.pdf</u>
- Taha H, Levinson R, Mohegh A, Gilbert H, Ban-Weiss G, Chen S. 2018. Air-temperature response to neighborhood-scale variations in albedo and canopy cover in the real world: Fine-resolution meteorological modeling and mobile temperature observations in the Los Angeles climate archipelago. *Climate* 6, 53 (25pp). <a href="https://doi.org/10.3390/cli6020053">https://doi.org/10.3390/cli6020053</a>



### Thank you!

